Cordial relationships restored

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4-prime Cordial Graphs Obtained from 4-prime Cordial Graphs

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a function. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if ∣∣vf (i)− vf (j)∣∣ 6 1, i, j ∈ {1, 2, . . . , k} and ∣∣ef (0)− ef (1)∣∣ 6 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled ...

متن کامل

On k-cordial labeling

Hovey [Discrete Math. 93 (1991), 183–194] introduced simultaneous generalizations of harmonious and cordial labellings. He defines a graph G of vertex set V (G) and edge set E(G) to be k-cordial if there is a vertex labelling f from V (G) to Zk, the group of integers modulo k, so that when each edge xy is assigned the label (f(x) + f(y)) (mod k), the number of vertices (respectively, edges) lab...

متن کامل

Cordial Sets of Hypercubes

For a graph G = (V,E) with a binary vertex coloring f : V (G)→ Z2, let vf (i) = |f−1(i)|. We say f is friendly if |vf (1) − vf (0)| ≤ 1, i.e., the number of vertices labeled 1 is the same or almost the same as the number of vertices labeled 0. The coloring f induces an edge labeling f ∗ : E(G) → Z2 defined by f ∗(uv) = f(u) + f(v) (mod 2), for each uv ∈ E(G). Let ef (i) = |{uv ∈ E(G) : f ∗(uv) ...

متن کامل

Uniformly cordial graphs

LetG be a graph with vertex set V (G) and edge setE(G). A labeling f : V (G) → {0, 1} induces an edge labeling f ∗ : E(G) → {0, 1}, defined by f ∗(xy) = |f (x) − f (y)| for each edge xy ∈ E(G). For i ∈ {0, 1}, let ni(f ) = |{v ∈ V (G) : f (v) = i}| and mi(f )=|{e ∈ E(G) : f ∗(e)= i}|. Let c(f )=|m0(f )−m1(f )|.A labeling f of a graphG is called friendly if |n0(f )−n1(f )| 1. A cordial labeling ...

متن کامل

All trees are six-cordial

For any integer k > 0, a tree T is k-cordial if there exists a labeling of the vertices of T by Zk, inducing edge-weights as the sum modulo k of the labels on incident vertices to a given edge, which furthermore satisfies the following conditions: 1. Each label appears on at most one more vertex than any other label. 2. Each edge-weight appears on at most one more edge than any other edge-weigh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BMJ

سال: 1995

ISSN: 0959-8138,1468-5833

DOI: 10.1136/bmj.310.6973.190a